桡动脉入路的另一个优点是无需血管闭合装置即可实现止血 7 。 由于患者的舒适度至关重要,并且考虑到当前患者可以在众多治疗方案中进行选择的现状,因此与需要长时间卧床的股动脉入路手术相比,桡动脉入路的患者能够在手术后直接行走,因此患者明显更加倾向于后者 13 。 这样一来,患者的术后护理需求更少,住院时间更短,这反过来又降低了医院成本 13。其他高危患者,例如老年人、使用血液稀释剂的患者、孕妇、严重肥胖者和患有髂股动脉粥样硬化疾病的患者,也可能因减少了辐射暴露而从桡动脉入路中受益和更少出现并发症 14,15 。
左侧经桡动脉入路和远端经桡动脉入路也是额外的改进,扩大了我们的设备以适应特殊的解剖学限制 16,17 。在大多数患者中,左侧椎动脉占优势,右侧锁骨下迂曲的发生率更高。在这些情况下,左侧桡动脉入路提供了更容易和更有利的入路 18-20 。 至于远端经桡动脉入路,研究表明,这种入路只需手在中立位置悬垂在身体上,不仅桡动脉闭塞率较低和较少出现手部缺血症状,还使得左侧进入变得更加舒适(因为不需要手旋后的过程) 21-24 。
02
桡动脉入路的缺点
尽管风险较低,但经桡动脉入路与多种并发症有关,例如桡动脉痉挛 (RAS)、闭塞和穿孔,这可能导致前臂血肿或筋膜室综合征。较少见的并发症包括假性动脉瘤、动静脉瘘形成或无菌性脓肿形成 5,25,26 。据报道,桡动脉痉挛 (RAS)发生在 4%-20%的经桡动脉手术中 27 ,其危险因素包括桡动脉直径小、反复摩擦和操作导致患者疼痛和焦虑,以及导丝进入侧支等 5,28-30 。当桡动脉痉挛(RAS)在手术一开始就出现,它会阻碍通路的建立,从而导致需要转换为股动脉入路,甚至无法手术。如果桡动脉痉挛(RAS)发生在置管后,通过鞘管给予血管扩张药物则可缓解 31 。
桡动脉闭塞 (RAO) 的发生率在1%-6%之间不等,并且与女性、低体重指数、高鞘径与桡动脉直径比、糖尿病和压迫止血(取决于压缩时间和压力)有关 32-34 。尽管桡动脉闭塞 (RAO) 由于上述双重血液供应而无症状,但桡动脉闭塞 (RAO) 的持续存在可能会使其将来本侧无法再经桡动脉入路手术 21 。桡动脉入路的其他限制是先天解剖学因素,包括桡动脉异常、曲折 、动脉畸形和锁骨下曲折,以及主动脉弓类型 5,10 。
一类桡动脉异常是高分叉的桡动脉起源,这需要介入医师在更加细长、较小的桡动脉直径的条件下建立通路,增加了桡动脉痉挛(RAS)的风险 5 。另一种异常是桡动脉袢,可能伴有桡动脉回返分支在其终点处,如果将导丝推进到桡动脉回返处,则会增加穿孔的风险 35,36 。尽管锁骨下曲折带来了挑战,但使用左侧桡动脉入路可以克服这些障碍 15,19 。
另一个挑战是异常的右锁骨下动脉,也称为 “迷走右锁骨下动脉”,其发病率为0.6%-1.4%,并导致导丝反复进入降主动脉 5,37 。虽然之前提到过,桡动脉入路更容易进入在III型主动脉弓患者中,在某些情况下(如头臂干太低)选择降主动脉可能具有挑战性,可能需要在CCA或升主动脉中重新调整导管 10 。最后,关于桡动脉入路的其他一些问题包括缺乏对新技术的熟悉,操作者在学习曲线开始时的辐射暴露增加,以及缺乏专门为桡动脉设计的耗材及设备 38-40 。
03
桡动脉入路的未来
尽管经股动脉导管插入术仍然是用于神经血管内手术大多数患者的主要通路,但对桡动脉入路的兴趣正在增长。心血管领域相关文献中的两项具有里程碑意义的研究——RIVAL和MATRIX的研究覆盖了7,000多名患者,其结果表明,桡动脉通路与血管并发症减少了60%,并显著降低了总体死亡率和净不良临床事件 2,41 。
在神经介入领域,桡动脉入路已被证明是安全、有效、可行的,最重要的是,受到患者的青睐 5,6,10,12-14,16,38 。美国各地的许多中心,如我们中心,已经引入他们的专科医师培训计划,以确保未来的神经外科医生接受经桡动脉和经股动脉训练。此外,我们的中心是国内首个进行经桡动脉机器人辅助颈动脉支架置入术的中心。这不仅证明了桡动脉入路的临床应用正在扩大,而且也证明了经桡动脉入路将持续存在。然而,在整个过程中,最重要的是通过技术进步、学习曲线和随机对照试验来解决桡动脉入路的局限性——因为任何医学革命的主要目标都是患者的关怀和安全。
本文译自 NeuroNews
(https://neuronewsinternational.com/)
参
考
文
献
向上滑动阅览
1. Dovey Z, Misra M, Thornton J et al. Guglielmi detachable coiling for intracranial aneurysms: the story so far. Arch Neurol. 2001; 58: 559–64.
2. Jolly S S, Yusuf S, Cairns J et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011; 377: 1409–20.
3. Mitchell M D, Hong J A, Lee B Y et al. Systematic review and cost-benefit analysis of radial artery access for coronary angiography and intervention. Circ Cardiovasc Qual Outcomes. 2012; 5: 454–62.
4. Mann J T 3rd, Cubeddu M G, Schneider J E et al. Right Radial Access for PTCA: A Prospective Study Demonstrates Reduced Complications and Hospital Charges. J Invasive Cardiol. 1996; 8(Suppl D): 40d–44d.
5. Brunet M C, Chen S H, Peterson E C. Transradial access for neurointerventions: management of access challenges and complications. J Neurointerv Surg. 2020; 12: 82–6.
6. Sweid A, Weinberg J H, Khanna O et al. Lessons Learned After 760 Neurointerventions via the Upper Extremity Vasculature: Pearls and Pitfalls. Neurosurgery. 2021; 88: e510–e522.
7. Fischman A M, Swinburne N C, Patel R S. A Technical Guide Describing the Use of Transradial Access Technique for Endovascular Interventions. Tech Vasc Interv Radiol. 2015; 18: 58–65.
8. Campeau L. Percutaneous radial artery approach for coronary angiography. Cathet Cardiovasc Diagn. 1989; 16: 3–7.
9. Jaroenngarmsamer T, Bhatia K D, Kortman H et al. Procedural success with radial access for carotid artery stenting: systematic review and meta-analysis. J Neurointerv Surg. 2020; 12: 87–93.
10. Snelling B M, Sur S, Shah S S et al. Transradial Approach for Complex Anterior and Posterior Circulation Interventions: Technical Nuances and Feasibility of Using Current Devices. Oper Neurosurg (Hagerstown). 2019; 17: 293–302.
11. Burzotta F, Nerla R, Pirozzolo G et al. Clinical and procedural impact of aortic arch anatomic variants in carotid stenting procedures. Catheter Cardiovasc Interv. 2015; 86: 480–9.
12. Maud A, Khatri R, Chaudhry M R A et al. Transradial Access Results in Faster Skin Puncture to Reperfusion Time than Transfemoral Access in Posterior Circulation Mechanical Thrombectomy. J Vasc Interv Neurol. 2019; 10: 53–7.
13. Cooper C J, El-Shiekh R A, Cohen D J et al. Effect of transradial access on quality of life and cost of cardiac catheterization: A randomized comparison. Am Heart J. 1999; 138: 430–6.
14. Sweid A, Das S, Weinberg J H et al. Transradial approach for diagnostic cerebral angiograms in the elderly: a comparative observational study. J Neurointerv Surg. 2020; 12: 1235–41.
15. Shah S S, Snelling B M, Brunet M C et al. Transradial Mechanical Thrombectomy for Proximal Middle Cerebral Artery Occlusion in a First Trimester Pregnancy: Case Report and Literature Review. World Neurosurg. 2018; 120: 415–9.
16. Barros G, Bass D I, Osbun J W et al. Left transradial access for cerebral angiography. J Neurointerv Surg. 2020; 12: 427–30.
17. Valsecchi O, Vassileva A, Cereda A F et al. Early Clinical Experience With Right and Left Distal Transradial Access in the Anatomical Snuffbox in 52 Consecutive Patients. J Invasive Cardiol. 2018; 30: 218–23.
18. Hong J M, Chung C S, Bang O Y et al. Vertebral artery dominance contributes to basilar artery curvature and peri-vertebrobasilar junctional infarcts. J Neurol Neurosurg Psychiatry. 2009; 80: 1087–92.
19. Norgaz T, Gorgulu S, Dagdelen S. A randomized study comparing the effectiveness of right and left radial approach for coronary angiography. Catheter Cardiovasc Interv. 2012; 80: 260–4.
20. Shah R M, Patel D, Abbate A et al. Comparison of transradial coronary procedures via right radial versus left radial artery approach: A meta-analysis. Catheter Cardiovasc Interv. 2016; 88: 1027–33.
21. Brunet M C, Chen S H, Sur S et al. Distal transradial access in the anatomical snuffbox for diagnostic cerebral angiography. J Neurointerv Surg. 2019; 11: 710–3.
22. Ziakas A, Koutouzis M, Didagelos M et al. Right arm distal transradial (snuffbox) access for coronary catheterization: Initial experience. Hellenic J Cardiol. 2020; 61: 106–9.
23. Koutouzis M, Kontopodis E, Tassopoulos A et al. Distal Versus Traditional Radial Approach for Coronary Angiography. Cardiovasc Revasc Med. 2019; 20: 678–80.
24. McCarthy D J, Chen S H, Brunet M C et al. Distal Radial Artery Access in the Anatomical Snuffbox for Neurointerventions: Case Report. World Neurosurg. 2019; 122: 355–9.
25. Kanei Y, Kwan T, Nakra N C et al. Transradial cardiac catheterization: a review of access site complications. Catheter Cardiovasc Interv. 2011; 78: 840–6.
26. Al-Sekaiti R, Ali M, Sallam M. Radial artery perforation after coronary intervention: is there a role for covered coronary stent? Catheter Cardiovasc Interv. 2011; 78: 632–5.
27. Ho H H, Jafary F H, Ong P J. Radial artery spasm during transradial cardiac catheterization and percutaneous coronary intervention: incidence, predisposing factors, prevention, and management. Cardiovasc Revasc Med. 2012; 13: 193–5.
28. Kristić I, Lukenda J. Radial artery spasm during transradial coronary procedures. J Invasive Cardiol. 2011; 23: 527–31.
29. Rathore S, Stables R H, Pauriah M et al. Impact of length and hydrophilic coating of the introducer sheath on radial artery spasm during transradial coronary intervention: a randomized study. JACC Cardiovasc Interv. 2010; 3: 475–83.
30. Jia D A, Zhou Y J, Shi D M et al. Incidence and predictors of radial artery spasm during transradial coronary angiography and intervention. Chin Med J (Engl). 2010; 123: 843–7.
31. Chugh S K, Chugh Y, Chugh S. How to tackle complications in radial procedures: Tip and tricks. Indian Heart J. 2015; 67: 275–81.
32. Abdelaal E, Brousseau-Provencher C, Montminy S et al. Risk score, causes, and clinical impact of failure of transradial approach for percutaneous coronary interventions. JACC Cardiovasc Interv. 2013; 6: 1129–37.
33. Abdelaal E, MacHaalany J, Plourde G et al. Prediction and impact of failure of transradial approach for primary percutaneous coronary intervention. Heart. 2016; 102: 919–25.
34. Avdikos G, Karatasakis A, Tsoumeleas A. Radial artery occlusion after transradial coronary catheterization. Cardiovasc Diagn Ther. 2017; 7: 305–16.
35. Patel P, Haussen D C, Nogueira R G. The Neuro Radialist. Interv Cardiol Clin. 2020; 9: 75–86.
36. Lo T S, Nolan J, Fountzopoulos E et al. Radial artery anomaly and its influence on transradial coronary procedural outcome. Heart. 2009; 95: 410–5.
37. Scala C, Leone Roberti Maggiore U, Candiani M et al. Aberrant right subclavian artery in fetuses with Down syndrome: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015; 46: 266–76.
38. Matsumoto Y, Hokama M, Nagashima H et al. Transradial approach for selective cerebral angiography: technical note. Neurol Res. 2000; 22: 605–8.
39. Chen S H, Snelling B M, Sur S et al. Transradial versus transfemoral access for anterior circulation mechanical thrombectomy: comparison of technical and clinical outcomes. J Neurointerv Surg. 2019; 11: 874–8.
40. Ul Haq M A, Rashid M, Kwok C S et al. Hand dysfunction after transradial artery catheterization for coronary procedures. World J Cardiol. 2017; 9: 609–19.
41. Sciahbasi A, Calabrò P, Sarandrea A et al. Randomized comparison of operator radiation exposure comparing transradial and transfemoral approach for percutaneous coronary procedures: rationale and design of the minimizing adverse haemorrhagic events by TRansradial access site and systemic implementation of angioX – RAdiation Dose study (RAD-MATRIX). Cardiovasc Revasc Med. 2014; 15: 209–13.
专家介绍
Pascal Jabbour
美国费城托马斯杰斐逊大学 Sidney Kimmel 医学院神经外科神经血管和血管内神经外科部门的负责人
Angela and Richard T Clark神经外科特聘教授
作为一名双重训练的血管神经外科医生,同时开展神经介入和开放手术治疗。
Kareem El Naamani
美国费城托马斯杰斐逊大学医院神经外科的博士后研究员
在黎巴嫩贝鲁特的黎巴嫩美国大学完成了医学教育,目前正在致力于成为一名认证的神经外科医生。返回搜狐,查看更多